Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1522
Create:
Last Update:

🌟 RT-DETRv2: усовершенствованная CV-модель для детекции объектов в реальном времени.

RT-DETRv2 - новая версия RT-DETR, альтернативы YOLO. RT-DETRv2 получила ряд улучшений: повышение гибкости, практичности и производительности.

Ключевое изменение - модификация модуля deformable attention в декодере. В RT-DETRv2 предлагается устанавливать различное количество точек выборки для признаков разных масштабов. Это дает возможность более эффективно извлекать многомасштабные признаки, делая ее более адаптировной к множествам сценариям детекции.

Чтобы сделать модель модель более практичной, заменили оператор grid_sample, характерный для DETR, на опциональный discrete_sample, который выполняет округление предсказанных смещений выборки, что ускоряет процесс без значительной потери точности.

RT-DETRv2 обучается стратегией динамического усиления данных (dynamic data augmentation). На ранних этапах используются более интенсивные методы аугментации, чтобы модель лучше обобщала данные. На поздних этапах уровень аугментации снижается, что позволяет модели адаптироваться к целевой области.

В новой версии используется кастомизация гиперпараметров в зависимости от масштаба модели. Например, для ResNet18 увеличивается скорость обучения, тогда как для более крупных моделей - ResNet101, она снижается.

Тесты RT-DETRv2 выполнялись на наборе датасете COCO, где модель показала улучшение метрики AP на 0.3–1.4 пункта по сравнению с RT-DETR, сохраняя при этом высокую скорость работы. Например, RT-DETRv2-S с архитектурой ResNet18 достигла AP 47.9, что на 1.4 пункта выше, чем у RT-DETR-S.

Скрипты для файнтюна RT-DETRv2 с Trainer или Accelerate размещены в репозитории HuggingFace на Github, а ноутбук простого инференса локально - тут или запустить в Google Collab.


📌Лицензирование: Apache 2.0


🟡Статья
🟡Arxiv
🟡Google Collab инференса
🖥Github


#AI #CV #RTDETRv2

BY Machine learning Interview





Share with your friend now:
tg-me.com/machinelearning_interview/1522

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

Machine learning Interview from sg


Telegram Machine learning Interview
FROM USA